Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio son también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.
Definición f: R —> R / f(x) = a.x+b donde a y b son números reales, es una función lineal
Este último renglón se lee: f de R en R tal que f de equis es igual a a.x+b
Por ejemplo, son funciones lineales f: f(x) = 2x+5 , g: g(x) = -3x+7, h: h(x) = 4
Definición: Las funciones lineales son polinomios de primer grado.
Recordemos que los polinomios de primer grado tienen la variable elevada al exponente 1. Es habitual no escribir el exponente cuando este es 1.
Ejemplos de funciones lineales: a(x) = 2x+7 b(x) = -4x+3 f(x) = 2x + 5 + 7x - 3
De estas funciones, vemos que la f no está reducida y ordenada como las demás. Podemos reducir términos semejantes para que la expresión quede de una forma mas sencilla, f(x) = 9x + 2
Tambien recordemos que hemos convenido que cuando no establecemos en forma explicita el dominio y el codominio de una función, supondremos que es el mayor conjunto posible en cada caso.
Por ejemplo, si hablamos de la función f, de dominio real y codominio real, tal que f(x)= 2x-6, anotaremos f: R ——-> R / f(x) = 2x-6 Siendo el dominio todos los números reales, R, y el codominio también, todos los números reales, R.
Esto se lee " f de R en R tal que f de x es igual a 2x-6"
Vamos a graficar esta función, que tal cual lo vimos en la definición, es una función lineal por ser de primer grado. Para graficarla haremos una tabla de valores.
f: R ——> R / f(x) = 2x-6
Le vamos dando valores a "x". ¿Que valores le podemos dar? Cualquiera que este dentro del dominio.
Por ejemplo, si x = 5 , entonces f(x) pasa a ser f(5), que es f(5) = 2.(5)-6 f(5) = 4
Entonces al 5 le corresponde el 4. Nuestro punto es el (5,4).
¿QUÉ ES LA FÍSICA?
Es la ciencia que estudia todas las relaciones y fenómenos asociados a la materia, la energía y el tiempo. Es una ciencia de carácter experimental que día a día nos sorprende con un sinnúmero de descubrimientos que nos permiten admirar con mucho regocijo la creación de DIOS.
martes, 24 de marzo de 2009
miércoles, 11 de marzo de 2009
MATEMÁTICAS
La matemática (del lat. mathematĭca, y éste del gr. τὰ μαθηματικά, derivado de μάθημα, conocimiento) es el estudio de las propiedades y las relaciones de entes abstractos (números, figuras geométricas) a partir de notaciones básicas exactas y a través del razonamiento lógico.
Mucha gente piensa en las matemáticas en términos de reglas que deben ser aprendidas para poder manipular símbolos o estudiar números o formas en abstracto por el mero hecho de aprenderlas. La teoría matemática sí se desarrolla en abstracto: no depende de otra cosa fuera de sí misma. La verdad de la teoría se mide por la lógica y no por el experimento. Sin embargo, una de sus utilizaciones más valiosas es el describir o modelar los procesos en el mundo real, de manera que hay una interacción constante entre las matemáticas puras y las matemáticas aplicadas.
Las matemáticas pueden considerarse como el estudio general de las estructura de sistemas. Puesto que el estudio no está relacionado con el mundo físico, se buscan pruebas formales rigurosas, en lugar de verificaciones experimentales. La teoría se presenta en términos de un pequeño número de verdades dadas (conocidas como axiomas), desde las que puede inferir toda una teoría. Por lo tanto, los objetivos son la generalidad en el planteamiento y el rigor en la prueba, fines que pueden explicar la preocupación tradicional de los matemáticos por la unificación de ramas aparentemente distintas de las matemáticas.
Mucha gente piensa en las matemáticas en términos de reglas que deben ser aprendidas para poder manipular símbolos o estudiar números o formas en abstracto por el mero hecho de aprenderlas. La teoría matemática sí se desarrolla en abstracto: no depende de otra cosa fuera de sí misma. La verdad de la teoría se mide por la lógica y no por el experimento. Sin embargo, una de sus utilizaciones más valiosas es el describir o modelar los procesos en el mundo real, de manera que hay una interacción constante entre las matemáticas puras y las matemáticas aplicadas.
Las matemáticas pueden considerarse como el estudio general de las estructura de sistemas. Puesto que el estudio no está relacionado con el mundo físico, se buscan pruebas formales rigurosas, en lugar de verificaciones experimentales. La teoría se presenta en términos de un pequeño número de verdades dadas (conocidas como axiomas), desde las que puede inferir toda una teoría. Por lo tanto, los objetivos son la generalidad en el planteamiento y el rigor en la prueba, fines que pueden explicar la preocupación tradicional de los matemáticos por la unificación de ramas aparentemente distintas de las matemáticas.
Suscribirse a:
Entradas (Atom)